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A B S T R A C T   

The objective of this work was to evaluate the use of an electronic nose and chemometric analysis to discriminate 
global patterns of volatile organic compounds (VOCs) in breath of postCOVID syndrome patients with pulmonary 
sequelae. A cross-sectional study was performed in two groups, the group 1 were subjects recovered from COVID- 
19 without lung damage and the group 2 were subjects recovered from COVID-19 with impaired lung function. 
The VOCs analysis was executed using a Cyranose 320 electronic nose with 32 sensors, applying principal 
component analysis (PCA), Partial Least Square-Discriminant Analysis, random forest, canonical discriminant 
analysis (CAP) and the diagnostic power of the test was evaluated using the ROC (Receiver Operating Charac
teristic) curve. A total of 228 participants were obtained, for the postCOVID group there are 157 and 71 for the 
control group, the chemometric analysis results indicate in the PCA an 84% explanation of the variability be
tween the groups, the PLS-DA indicates an observable separation between the groups and 10 sensors related to 
this separation, by random forest, a classification error was obtained for the control group of 0.090 and for the 
postCOVID group of 0.088 correct classification. The CAP model showed 83.8% of correct classification and the 
external validation of the model showed 80.1% of correct classification. Sensitivity and specificity reached 88.9% 
(73.9%–96.9%) and 96.9% (83.7%–99.9%) respectively. It is considered that this technology can be used to 
establish the starting point in the evaluation of lung damage in postCOVID patients with pulmonary sequelae.   

1. Introduction 

The World Health Organization refers to the postCOVID condition as 
a set of prolonged symptoms lasting at least 2 months that cannot be 
explained by an alternative diagnosis, among the most common symp
toms are fatigue, dyspnea, mental fog problems, persistent cough, chest 
pain, slurred speech, muscle aches, loss of smell, depression or anxiety, 
and fever, among many others [1]. Such symptoms may be permanent 
and/or fluctuating in frequency and intensity over time, remaining in 
some cases for more than twelve months [2,3], estimating a global 
pooled prevalence of postCOVID in 43% of the population [4]. 

This disease affects multiple organs and there is great concern in the 
sequelae on the respiratory system [5]. Although the pathophysiology of 
the persistent symptoms is unknown, they have been attributed to the 
high viral load where immune cells receive a high stimulus for the 
expression of inflammatory mediators, generating cytokine storms 
which in turn cause damage to the alveolar structures and their function, 
therefore, complications may occur in the acute phase of the infection 
related to intubation, prolonged rest, malnutrition, among others [6]. 

Subsequently, after the acute phase, the lungs continue in a pro- 
inflammatory and pro-thrombotic state leading to a fragile and vulner
able epithelium, due to the expression of immune mediators for virus 
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clearance and repair of damage in the lung parenchyma, which in turn 
compromises the local and/or systemic oxygenation status, generating 
the release of damage-associated molecular patterns (DAMPs) and a 
constant stimulus of the repair-damage cycle, among other mechanisms, 
resulting in thickening of the epithelial basement membrane, remodel
ing, diffuse alveolar damage, and pulmonary fibrosis during the post
COVID phase [7–11]. In this way, it is important to evaluate the 
pulmonary effects in post-COVID due to the probable pulmonary inter
stitial fibrosis as it has negative effects on the quality of life of people 
[12]. 

Clinical follow-up of postCOVID patients is assessed by pulmonary 
function and/or imaging tests. The initial step is chest radiography; 
however, in patients with residual radiographic or functional damage, 
high-resolution chest CT is indicated not only for further characteriza
tion of the anatomical regions of the lung parenchyma, but also to 
establish a baseline for the follow-up and as one of the current methods 
for pulmonary fibrosis diagnosis reaching a classification by its 
anatomical pattern [13]. Although these images are key to diagnosis, 
they do not reveal functionality, only anatomy. Hence, techniques to 
evaluate functionality have acquired relevance, among the most studied 
in the postCOVID era is the evaluation of carbon monoxide diffusing 
capacity (DLCO), which has been described as one of the most important 
pulmonary evaluation methods in the postCOVID era since it allows the 
identification of conditions in alveolar gas exchange associated with 
lung parenchymal damage caused by SARS-CoV 2 , which on a larger 
scale can be reflected in the alteration of pulmonary flows and volumes 
through forced spirometry [14,15]. However, a high demand, low 
availability, and accessibility to such diagnostic methods as well as lack 
of follow-up, highlight the urgency of care protocols for people with 
postCOVID, particularly in pulmonary health. 

In this regard, our group has demonstrated, in different studies, the 
usefulness of evaluating volatile organic compounds (VOCs) in exhaled 
breath as a screening method for chronic diseases such as lung cancer, 
breast cancer, preeclampsia, diabetes and chronic obstructive pulmo
nary disease, among others [16–21]. This biological matrix consists of a 
mixture of organic compounds that come from cellular metabolism and 
have low solubility in the blood, which means that they can be expelled 
during exhalation and thus be determined by analytical techniques [22]. 

These chemical patterns represent normal physiological or specific 
pathophysiological conditions. In a recent study by our working group, 
we identified a global chemical pattern of volatile organic compounds in 
exhaled breath capable of discriminating between patients with COVID- 
19 and controls using electrochemical nanosensors, the automated 
learning model presented a sensitivity of 100% and a specificity of 
97.6% [23], In addition, a pilot study was applied in which patients 
recovered from infection but with pulmonary sequelae were followed 
up, identifying VOC patterns that allow to discriminate between people 
with infection, people recovered with pulmonary sequelae and people 
recovered without pulmonary sequelae [24]. This represents a practical 
screening approach capable of quickly identifying patients suspected of 
having it and providing useful epidemiological information to guide 
community health strategies in the context of COVID-19. 

An important point of this methodology is that we have demon
strated in different studies the assessment of lung damage associated 
with various pathologies such as COPD and lung cancer [18–20]. In this 
way, the use of olfactory technology consisting of functionalized nano
sensors in the adsorption of VOCs can be a useful method to assess lung 
damage in patients during postCOVID which is fast, easy to apply, it can 
reach a high number of people and at a low cost. The objective of this 
study was to develop a methodology to evaluate global chemical pat
terns in exhaled breath for the discrimination and classification of pa
tients with persistent lung damage caused by COVID. 

2. Material and methods 

2.1. Study design 

This study was approved by the research ethics committee of the 
Hospital General de México “Dr. Eduardo Liceaga” with protocol num
ber 023/058OHGM/SLP/22, in compliance with the International 
Ethical Guidelines for Biomedical Research Involving Human Subjects of 
the Council for International Organizations of Medical Sciences 
(CIOMS). The participation of the study subjects was voluntary, 
obtaining the signature of an informed consent letter. 

The study design consisted of an analytical cross-sectional study, the 
participants were recruited from health care centers in Mexico who 
attended the postCOVID follow-up evaluation, they were randomly 
recruited and divided into two working groups for the construction of 
the predictive model: group 1) postCOVID patients without impaired 
pulmonary function: subjects recovered from COVID-19 without lung 
damage and group 2) postCOVID patients with impaired pulmonary 
function: subjects recovered from COVID-19 with impaired lung func
tion. For the sample size calculation the conservative values already 
proposed by Cohen [25] were used to detect a standardized difference 
between the means of the groups equivalent to an r = 0.5 with a power 
of 0.8, resulting in 80 cases per group, 

The study inclusion criteria for the postCOVID patients without 
impaired pulmonary function were people between 18 and 70 years old, 
of both genders, with a diagnosis of COVID-19 confirmed by RT-qPCR, 
with an evolution time of 4 weeks from the onset of symptoms, with 
normal pulmonary function test results by pre- and post-bronchodilator 
forced spirometry or, with no history of respiratory symptoms or clinical 
data suggestive of ventilatory abnormalities on pulmonary examination. 
The proposed exclusion criteria were: pregnant patients, patients with 
confirmed or suspected pulmonary infection different from COVID-19 
(influenza, tuberculosis or other infectious disease), patients with a 
history of thoracic or ocular surgery in the last 3 months, cognitive and/ 
or psychomotor disability that limits breath sampling, as well as spiro
metric maneuver, rib cage malformation, subjects who did not present 
themselves in the necessary conditions for sampling and spirometry, 
subjects who at the time of the evaluation showed signs and symptoms of 
acute infectious disease and/or reported contact with a person 
confirmed or suspected of having COVID-19 in the last seven days, 
furthermore, data from subjects who failed to complete the pulmonary 
function tests, obtained an insufficient breath sample and/or had 
incomplete clinical information were also eliminated. 

For the postCOVID patients with impaired pulmonary function, the 
same exclusion and inclusion criteria were established as for the control 
group, except that they obtained an abnormal spirometry result, with or 
without respiratory signs and symptoms. 

All participants had an RT-qPCR- or negative antigen test to exclude 
reinfection at the moment of breath sample collection and pulmonary 
evaluation. 

2.2. Pulmonary function evaluation and health questionnaire 

The pulmonary function evaluation of the two groups was performed 
by forced spirometry (pre- and post-bronchodilator). Subjects, were 
classified as impaired lung function when the Forced Expiratory Vol
ume/Forced Vital Capacity (FEV1/FVC) ratio was greater than 80% and 
the FVC was below 80% of the predicted value, suggesting a spirometric 
pattern of lung restriction, characteristic of COVID-19 impairment. 
Likewise, an obstructive pattern was considered when the FEV1/FVC 
ratio was below 80% with or without a significant post-bronchodilator 
response in FEV1. The severity of the obstruction and severity were 
classified according to the parameters established by international 
guidelines. Forced spirometry tests were performed with a certified 
portable spirometer; EasyOne®, the evaluations were performed by 
health personnel certified by the National Institute for Occupational 
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Safety and Health (NIOSH) and the National Institute of Respiratory 
Diseases (INER), in addition, the maneuvers complied with the quality 
criteria standardized by the American Thoracic Society/European Res
piratory Society ATS/ERS [26], following the biosafety guidelines 
established for the prevention of SARS-CoV 2 transmission in pulmonary 
function laboratories. Likewise, the cut-off points result interpretation 
were those established for the Mexican population. Moreover, other 
sociodemographic variables were collected such as: age, sex, and clinical 
data such as: respiratory symptoms, supplemental oxygen use, hospi
talization, pulse oximetry, comorbidities, pathological history, phar
macological treatment, evolution time, number of previous contagions, 
vaccination against SARS-CoV 2 . In addition to the above, evaluation of 
thoracoabdominal mobility and oxygen saturation during a 6-min walk, 
supported the clinical correlation of lung damage. 

2.3. Exhaled breath sampling 

Exhaled breath sampling was performed based on previous studies 
by our research group [24]. The participant was asked to relax and take 
three deep inhalations, then exhale through a straw into a breath 
collection bag, which consisted of a metalized polypropylene bag of 
approximately 250 mL with a hermetic seal, this material was purged 
with ultra-pure nitrogen. The participant criteria for sample collection 
were the following conditions: i) minimum fasting of 4 h, ii) no smoking 
before the study (minimum of 2 h), iii) no oral hygiene and iv) before 
taking any medication, the oximetry and spirometry parameters will be 
taken at the time of the study. Samples were preserved and transported 
cold for analysis. 

2.4. Olfactory technology 

A Cyranose 320 (Sensigent ®, California, US) electronic nose was 
used to determine the chemical pattern of the breath of the study groups. 
This technology has 32 chemical nanosensors that have different VOC 
adsorption properties, producing different degrees of response due to 
their polymeric composition (polyvinyl butyral, polyvinyl acetate, 
polystyrene, and polyethylene oxide) and the conductive nanoparticles 
(carbon nanotubes) of which they are composed. 

For sample processing, each sample was incubated at 37 ◦C for 5 min 
before analysis. The electronic nose configuration consisted of a con
stant flow rate of 120 mL/min for 40 s of baseline recording with ultra- 
pure nitrogen with a sample analysis period of 45 s, subsequently the 
flow rate was increased to 180 mL/min of ultra-pure nitrogen for sample 
line purge and air input, with a substrate temperature of 45 ◦C. During 
the analysis, the instrument recorded the increase in electrical resistance 
of each sensor as a result of the adsorption of volatile compounds on the 
sensors and the responses of methanol and undecane standards at a 
concentration of 1 ppm were recorded (Tables 1 and 2 supplementary 
material). 

2.5. Multivariate statistical analysis and automated learning methods 

Different multivariate statistical analyses were performed using the 
increase in the resistance of the 32 sensors obtained from the fractional 
difference: ΔR/Ro = (Rmax-Ro)/Ro where R is the maximum system 
response of each sensor, and Ro is the reference reading of each sensor 
(ultra-pure nitrogen). 

Subsequently, for all analyses, a normalization of the sum was per
formed to reduce the environmental effect by dividing the response of 
each sensor by the sum of the absolute values of the response of each 
sensor: (ΔR/Ro)i= (ΔR/Ro)i/

∑
|ΔR/Ro|j. Additionally, auto-scaling 

was performed to remove the effects of the magnitude of the sensor 
responses by subtracting the average of the samples from the individual 
response of each sample and dividing by the standard deviation of the 
samples. 

The data were analyzed by chemometric methods, Principal 

Component Analysis (PCA) was used as an unsupervised methodology, 
this analysis expresses a set of variables in a set of linear combinations of 
uncorrelated factors with each other and the variability of the data, in 
this way, it allows to represent the original data in a space of lower 
dimension than the original space, and it limits to the maximum the loss 
of information [27]. Subsequently, a Partial Least Square-Discriminant 
Analysis (PLS-DA) was performed, this is a supervised method that 
uses the multiple linear regression technique to find the maximum 
covariance direction between a data set (X) and a class membership (Y), 
as a supervised method, PLS-DA can perform both classification and 
feature selection by obtaining the variable importance in projection 
(VIP), this is obtained from a weighted sum of squares of the PLS 
loadings, the weights are based on the amount of variance Y explained in 
each dimension and important features are selected [28]. 

Additionally, the supervised random forest method was used, which 
uses a set of classification trees, each of which grows by randomly 
selecting features from a bootstrap sample on each branch. Class pre
diction is based on the majority vote of the ensemble. During tree con
struction, approximately one third of the instances are left out of the 
bootstrap sample. These data are used as a test sample to obtain an 
unbiased estimate of the classification error (OOB). The importance of 
the variable is assessed by measuring the increase in OOB error when 
permuted. 

Finally, Canonical Analysis of Principal Coordinates (CAP) was used 
to order the matrices, and to further determine the level of misclassifi
cation between sampling regions, the leave-one-out method was applied 

Table 1 
Sociodemographic and clinical characteristics.  

Parameters postCOVID patients with 
impaired pulmonary 
function (n = 157) 

postCOVID patients without 
impaired pulmonary function 
(n = 71) 

Age (years) 53 ± 6 38 + 4 
Female (%) 37 53 
Male (%) 62 46 
BMI 26 ± 3 21 + 4 
FVC (% predicted) 75 ± 14 * 96 + 6 * 
FEV1 (% 

predicted) 
71 ± 17* 97 + 7 * 

Chest mobility 
(cm) 

2 ± 1 3 + 1 * 

Abdominal 
mobility (cm) 

5 ± 2 7 + 1 

Hospitalizated, 
(%) 

18 2 

Hypoxic episode 
(%) 

97 2 

Days of oxygen use 48 + 6 3 + 3 
Smoking, n (%) 58 29 
Asthma 30 3 
Comorbidity 73 46 
Fatigue (%) 74 38 
Dyspnea (%) 68 5 
Cough (%) 35 3 
Headache (%) 43 21 
Myalgia (%) 57 24 
Arthralgia (%) 22 15 
Brain fog 55 39 

BMI: Body Mass index, FVC: Forced Vital Capacity, FEV1: Forced Expiratory 
Volume in 1 s. 

Table 2 
Comparison of sensitivity and specificity according to the classification method 
performed.  

Classification method Sensitivity (CI 
95%) 

Specificity (CI 
95%) 

Random forest 81.4 (69.1–85.4%) 88.1 (78.2–95.3%) 
Canonical Analysis of Principal 

Coordinates 
88.9 (73.9–96.9%) 96.9 (83.7–99.9%)  
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to the variables in the canonical space (using a K-fold of n = 228) to 
predict group associations and thus obtain the overall classification 
success rates, using a value of m = 29 [23]. 

The performance of the CAP model was evaluated by ROC using the 
PC1 axis values obtained from the training model, with a 95% confi
dence interval analysis, and the threshold value with the highest spec
ificity/sensitivity ratio was selected. An external validation was 
conducted by selecting 70% of the population for group definition and 
the other 30% were randomly selected to validate the model [23]. 

Descriptive statistical parameters were calculated, statistical analysis 
was carried out using the statistical software Graphpad Prism 5.0. For 
chemometric analyses, the statistical programs MetaboAnalyst 5.0 
(https://dev.metaboanalyst.ca/MetaboAnalyst/home.xhtml) and 
PRIMER v7® statistical software with PERMANOVA ad in were used. 

3. Results 

Table 1 shows the characteristics of the study participants. A total of 
228 participants were obtained, 171 for the post-COVID group and 71 
for the control group. The group 2 had an average age of 53.4 years, 
62.3% were men. Significant differences were found between the values 
of FVC and FEV 1, thoracic mobility and abdominal mobility of the 
group 2 versus group 1. The most common symptoms in the group 2 
were cough (35.6%), headache (43.5%), cognitive damage (55.4%), 
myalgia (57%), dyspnea (68.3%) and fatigue (74.2%). The time range of 
symptoms varied between 1 and 12 months and 97% presented hypoxia 

during the acute episode in a range between 45 and 85%. 
In the group 2, the spirometry values indicated that 68.5% presented 

an obstructive pattern, 26.3% a suggestive pattern of restriction and 
5.2% a normal pattern, while in the control group only 4.2% presented 
an obstructive pattern and 95.8% a normal pattern, additionally, pre
sented a higher frequency of cardiopulmonary comorbidities in 57% 
compared to the group 1 with 38.5%. Furthermore, through linear 
regression analysis, it was identified that the variables that showed the 
greatest contribution to the forced vital capacity less than 80% of the 
predicted value were: exposure time to risk factors for lung damage (p, 
0.01) within which smoking and exposure to wood smoke were the most 
frequent (35%) and on the other hand the postCOVID functional status 
(p, 0.00) and hypoxia (p, 0.02). It is worth noting that the degree of 
perceived dyspnea showed no association with the restrictive spiro
metric pattern, making evident a possible silent hypoxia that has 
remained in some subjects in this study. 

Chemometric analyses were performed to establish the differences 
between groups, Fig. 1 shows the PCA results, a good separation be
tween groups can be visualized which indicates VOC patterns in the 
exhaled breath, this analysis explains up to 84% of the variability with 3 
PCs (PC1 = 67.1%, PC2 = 10.4%, PC3 = 6.5%). 

Fig. 2 shows the supervised PLS-DA analysis, showing discrimination 
between the groups, this analysis allows to establish the significant 
variables of importance for the groups, with respect to the postCOVID 
patients with impaired pulmonary function the sensors in order of 
importance are S17, S26, S32, S12, S9, S25, S22, S21, S10 and S24. 

Fig. 1. Principal Component Analysis plot of the study groups. Red circle: Group 1 postCOVID patients without impaired pulmonary function, and green circle: 
Group 2 postCOVID patients with impaired pulmonary function. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 
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With respect to random forest classification, we obtained a classifi
cation error (ODB) for the group 1 of 0.090 and for thegroup 2 of 0.088 
correct classification. 

The CAP analysis of postCOVID and controls shows a separation of 
VOCs on the CAP 1 axis with a correlation coefficient of 0.89 and 83.8% 
of correct classification (Fig. 3), the external validation of the CAP model 
obtains 80.1% of correct classification. 

Furthermore, with the values generated in the CAP 1 score, the cut- 
off point of − 0.029 was established for group 1 vs group 2, which pro
vided 88.9% sensitivity (confidence intervals at 95%: 73.9–96.9%) and 
96.9% specificity (confidence intervals at 95%: 83.7–99.9%) (Fig. 4). 

Table 3 shows the correlation values between the CAP 1 value and 
the sensors. For group 1, 20 sensors are positively associated, while for 
group 2, 5 sensors are negatively associated. 

4. Discussion 

This investigation demonstrated the potential use of the electronic 
nose for the discrimination of people with pulmonary sequelae due to 
COVID and people who presented COVID-19 and no sequelae, both 
groups well characterized by spirometry. 

Since the beginning of the COVID 19 pandemic, several research 
groups focused on the use of the electronic nose as a potential method 
for the identification of symptomatic and asymptomatic individuals with 
COVID 19 in exhaled breath [29–32], most studies have been based on 
the hyperinflammatory response caused by the SARS-CoV 2 virus in 

organs [33], particularly in the lung, which alters the volatile and 
semivolatile metabolite patterns identified in this biological matrix [24]. 
During the course of the pandemic, more has been learned about this 
virus, and while the acute phase is important due to the severity of 
death, patients, who manage to overcome the disease, may present 
prolonged heterogeneous symptoms which require identification for 
personalized treatment, as well as continued support [34]. 

One of the most serious complications in postCOVID syndrome is 
observed in the respiratory tract; the development of pulmonary fibrosis 
has been described [35]. Similarly, this pulmonary damage can cause 
changes in metabolite patterns, e.g., Cui et al. conducted a follow-up 
study of patients with COVID 19 for 1 year of serum metabolites, an 
increase in sphingosine-1-phosphate was reported, which is associated 
with inflammatory factors [36], additionally it plays an important role 
in tissue fibrosis [37]. On the other hand, normally, the diagnosis of this 
type of lung damage is based on clinical, radiological, and pathological 
findings [38]. However, they present problems of interpretation due to 
lack of specialists, health inequity due to lack of availability of equip
ment in developing countries, among others [39]. Thereby, the meta
bolic changes present during postCOVID, represent an important 
approach to diagnosis and it can be added as respiratory function tests, 
since one rubric is “how it looks” and another is “how it works” [40]. 

Two pilot studies have been conducted up to the time of the scientific 
literature review [24,41]. The study proposed by Nidheesh et al. dis
cussed the discrimination ability in the exhaled breath of 24 postCOVID 
patients, 24 healthy subjects and 12 subjects with asthma, the 

Fig. 2. Partial Least Squares - Discriminant Analysis (PLS-DA) plot of the study groups. Red circle: Group 1 postCOVID patients without impaired pulmonary 
function, and green circle: Group 2 postCOVID patients with impaired pulmonary function. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the Web version of this article.) 
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preliminary result was that through a supervised algorithm using kNN 
the prediction of the model reaches 100% sensitivity and specificity 
[41], although, this result is encouraging, the authors do not show how 
the classification of lung damage in postCOVID patients was performed. 
On the other hand, they point out that the healthy subjects did not report 
having suffered from COVID 19, this condition may generate biases at 
the time of analysis, we consider relevant a clinical assessment with 
standardized pulmonary evaluation methods, given that the differences 
may be due to the conditions of the control group, however, the pilot 
study presents an important guideline on the potential use of the elec
tronic nose. 

In our analysis, interesting results were obtained in the spirometry 
patterns, we demonstrated that there is discrimination between the 

controls with normal patterns with respect to the restrictive, mixed, 
normal and obstructive patterns of postCOVID patients, indeed, we can 
observe in Supplementary Fig. 1, the clustering of patterns in the post
COVID group, indicating that the separation is due to the condition of 
lung damage associated with postCOVID, this was also proved with 
patients with asthma, in Supplementary Fig. 2, we observe that patients 
with postCOVID and asthma differ from controls with asthma and ach
ieve a good classification based on the condition of lung damage asso
ciated with postCOVID. 

Although the number of samples is considerably high to meet the 
objective of the study, one of the weaknesses of the study was the lack of 
evaluation of other variables for pulmonary function that have been 
strongly associated with postCOVID syndrome, e.g., in our study we 
evidenced a silent hypoxia that has remained in some subjects in this 
study, which is why the evaluation of pulmonary diffusing capacity of 
carbon monoxide (DLCO) has become one of the most important pul
monary function tests for evaluation in postCOVID [42], this requires an 
increase in the number of sample and the use of highly specialized 
equipment. On the other hand, it would be important to identify specific 
metabolites by techniques such as mass spectrometry, which would 
allow to understand altered biochemical pathways in postCOVID and to 
increase the sensitivity of the test by using specific sensors for these 
compounds. However, one of the strengths of our study was the char
acterization of patients by spirometry, which allows to categorize lung 
damage and compare it with the results obtained by the electronic nose. 

Another strength has been the evaluation of clinical variables that 
support the semiology of lung damage in the postCOVID patient, being 
recognized as a heterogeneous pathological entity in which sometimes 
the patient does not refer symptoms typically correlated with lung 
damage, which is why during the clinical evaluation, it could not be 
properly diagnosed. This fact highlights the importance of this tool as an 
auxiliary in the differential diagnosis of lung damage. 

Therefore, in this study we were able to establish a model for 
discrimination of volatile organic compound profiles in exhaled breath 
between postCOVID patients with and without lung damage by an 
electronic nose and chemometric strategies. We obtained a test that has 
a good classification, the analysis is less than 3 min, compact, portable 
and it has the potential to be used on a massive scale, especially in less 
favored regions where there is a lack of equipment or adequate medical 
infrastructure for the identification of pulmonary sequelae. 

Last but not least, it is critical to identify risk factors for lasting lung 
damage and to define at-risk patients who should receive specialized 
respiratory follow-up after infection. This technology will support 
physicians and researchers to establish rapid mitigation strategies for 
post-pandemic scenarios and to develop therapeutic strategies and 
pulmonary rehabilitation. 

Moreover, we believe that this technology can be used to establish 
the starting point for lung damage evaluation in postCOVID patients, 
and due to the simplicity of the technique it can support strategies for 
patient identification and monitoring with pulmonary sequelae during 
rehabilitation. Further research efforts are required for the imple
mentation of this technology in clinical management and support in the 
post-pandemic scenario. 
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